Which of the following is equivalent to $\cfrac{3{x^3} - 3x^2 + 5}{x-{4}}$ ?

A. $3x^2 - {15}x - {60} - \cfrac{245}{x-{4}}$

B. $3x^2 - {15}x + {60} + \cfrac{65}{x-{4}}$

C. $3x^2 + {9}x + {36} + \cfrac{149}{x-{4}}$

D. $3x^2 - {15}x - \cfrac{65}{x-{4}}$

E. $3x^2 + {9}x + \cfrac{41}{x-{4}}$

A. $3x^2 - {15}x - {60} - \cfrac{245}{x-{4}}$

B. $3x^2 - {15}x + {60} + \cfrac{65}{x-{4}}$

C. $3x^2 + {9}x + {36} + \cfrac{149}{x-{4}}$

D. $3x^2 - {15}x - \cfrac{65}{x-{4}}$

E. $3x^2 + {9}x + \cfrac{41}{x-{4}}$

*No Solution Steps*