Which of the following is equivalent to $\cfrac{3{x^3} - 5x^2 + 1}{x-{5}}$ ?

A. $3x^2 + {10}x + {50} + \cfrac{251}{x-{5}}$

B. $3x^2 + {10}x + \cfrac{51}{x-{5}}$

C. $3x^2 - {20}x - {100} - \cfrac{501}{x-{5}}$

D. $3x^2 - {20}x - \cfrac{101}{x-{5}}$

E. $3x^2 - {20}x + {100} + \cfrac{101}{x-{5}}$

A. $3x^2 + {10}x + {50} + \cfrac{251}{x-{5}}$

B. $3x^2 + {10}x + \cfrac{51}{x-{5}}$

C. $3x^2 - {20}x - {100} - \cfrac{501}{x-{5}}$

D. $3x^2 - {20}x - \cfrac{101}{x-{5}}$

E. $3x^2 - {20}x + {100} + \cfrac{101}{x-{5}}$

*No Solution Steps*