Which of the following is equivalent to $\cfrac{2{x^3} - 2x^2 + 4}{x-{5}}$ ?
A. $2x^2 + {8}x + {40} + \cfrac{204}{x-{5}}$
B. $2x^2 + {8}x + \cfrac{44}{x-{5}}$
C. $2x^2 - {12}x - {60} - \cfrac{304}{x-{5}}$
D. $2x^2 - {12}x - \cfrac{64}{x-{5}}$
E. $2x^2 - {12}x + {60} + \cfrac{64}{x-{5}}$
No Solution StepsA. $2x^2 + {8}x + {40} + \cfrac{204}{x-{5}}$
B. $2x^2 + {8}x + \cfrac{44}{x-{5}}$
C. $2x^2 - {12}x - {60} - \cfrac{304}{x-{5}}$
D. $2x^2 - {12}x - \cfrac{64}{x-{5}}$
E. $2x^2 - {12}x + {60} + \cfrac{64}{x-{5}}$
