Which of the following is equivalent to $\cfrac{3{x^3} - 2x^2 + 4}{x-{5}}$ ?
A. $3x^2 + {13}x + {65} + \cfrac{329}{x-{5}}$
B. $3x^2 + {13}x + \cfrac{69}{x-{5}}$
C. $3x^2 - {17}x - {85} - \cfrac{429}{x-{5}}$
D. $3x^2 - {17}x - \cfrac{89}{x-{5}}$
E. $3x^2 - {17}x + {85} + \cfrac{89}{x-{5}}$
No Solution StepsA. $3x^2 + {13}x + {65} + \cfrac{329}{x-{5}}$
B. $3x^2 + {13}x + \cfrac{69}{x-{5}}$
C. $3x^2 - {17}x - {85} - \cfrac{429}{x-{5}}$
D. $3x^2 - {17}x - \cfrac{89}{x-{5}}$
E. $3x^2 - {17}x + {85} + \cfrac{89}{x-{5}}$