Which of the following is equivalent to $\cfrac{2{x^3} - 3x^2 + 4}{x-{3}}$ ?

A. $2x^2 + {3}x + {9} + \cfrac{31}{x-{3}}$

B. $2x^2 - {9}x - {27} - \cfrac{85}{x-{3}}$

C. $2x^2 - {9}x + {27} + \cfrac{31}{x-{3}}$

D. $2x^2 - {9}x - \cfrac{31}{x-{3}}$

E. $2x^2 + {3}x + \cfrac{13}{x-{3}}$

A. $2x^2 + {3}x + {9} + \cfrac{31}{x-{3}}$

B. $2x^2 - {9}x - {27} - \cfrac{85}{x-{3}}$

C. $2x^2 - {9}x + {27} + \cfrac{31}{x-{3}}$

D. $2x^2 - {9}x - \cfrac{31}{x-{3}}$

E. $2x^2 + {3}x + \cfrac{13}{x-{3}}$